If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10a^2-75a+90=0
a = 10; b = -75; c = +90;
Δ = b2-4ac
Δ = -752-4·10·90
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-75)-45}{2*10}=\frac{30}{20} =1+1/2 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-75)+45}{2*10}=\frac{120}{20} =6 $
| (3x–5)=30+5x | | 128+109+x=360 | | 0.2m=0.3(m=5) | | -5.7x+24=22 | | 2x-65=x+1 | | 5(x+3)^2+6=251 | | 266.24=99.99+23.75(x-1) | | 2x=7x-100 | | 3n+64=1+8n | | 3(x+-2)=27 | | 2x+98+12x=94x+89 | | 2(x+2)+x=4(x-1)+9 | | 2(x+2)-5=3x-20 | | 5x+7=42-3x | | -8x+20x-11=2(6x-5)-1 | | x+0.2x=1-0.7 | | 4x=8(4+x) | | 6x−4x+13=x+6 | | 5k+3=83 | | 20+4n=100 | | k4− 2=1 | | 8x+4=9x+6 | | (t+3)5/9=49 | | c/2+29=35 | | 6(x+2)-(3x-12)=-9 | | 2d−11=9 | | (2x3x)/5x=11/2 | | 3(4x-1)+3=-48 | | (2x3x)/5x1=11/2 | | (2x3)/5x1=11/2 | | 5x+35=18x+9 | | 3(x-1)+10=10 |